Quadratic Convergence and Numerical Experiments of Newton’s Method for Computing the Nearest Correlation Matrix

نویسندگان

  • Houduo Qi
  • Defeng Sun
چکیده

The nearest correlation matrix problem is to find a correlation matrix which is closest to a given symmetric matrix under the Frobenius norm. The well studied dual approach is to reformulate this problem as an unconstrained continuously differentiable convex optimization problem. Gradient methods and quasi-Newton methods like BFGS have been used directly to obtain globally convergent methods. Since the objective function in the dual approach is not twice continuously differentiable, these methods converge at best linearly. In this paper, we investigate a Newton-type method for the nearest correlation matrix problem. Based on recent developments on strongly semismooth matrix valued functions, we prove the quadratic convergence of the proposed Newton’s method. Numerical experiments confirm the fast convergence and the high efficiency of the method. AMS subject classifications. 49M45, 90C25, 90C33

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

Computing the Nearest Doubly Stochastic Matrix with A Prescribed Entry

In this paper a nearest doubly stochastic matrix problem is studied. This problem is to find the closest doubly stochastic matrix with the prescribed (1, 1) entry to a given matrix. According to the well-established dual theory in optimization, the dual of the underlying problem is an unconstrained differentiable but not twice differentiable convex optimization problem. A Newton-type method is ...

متن کامل

Computing a Nearest Correlation Matrix with Factor Structure

An n×n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nea...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix

The nearest correlation matrix problem is to find a correlation matrix which is closest to a given symmetric matrix in the Frobenius norm. The well-studied dual approach is to reformulate this problem as an unconstrained continuously differentiable convex optimization problem. Gradient methods and quasi-Newton methods such as BFGS have been used directly to obtain globally convergent methods. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005